FOTOBIOMODULAÇÃO EM TEMPO REAL DO SANGUE ABORDAGEM INTEGRADA A TERMOGRAFIA E OSCILOSCOPIA

Autores

DOI:

https://doi.org/10.70187/recisatec.v5i4.398

Palavras-chave:

Fotobiomodulação, Biofotônica, Bioeletrônica.

Resumo

A fotobiomodulação (FBM) tem sido amplamente estudada por seus efeitos sobre tecidos biológicos, em especial no que tange a modulação mitocondrial. Este estudo apresenta uma abordagem experimental para avaliar em tempo real as respostas bioelétricas de amostras de sangue animal in vitro submetido à radiação de 808 nm. Foram utilizadas técnicas de osciloscopia digital e termografia infravermelha, permitindo a análise integrada de parâmetros elétricos em grupos experimentais: solução salina, salina irradiada, sangue e sangue irradiado. Conclusão: A irradiação com LED infravermelho de 808 nm modulou a atividade bioelétrica do sangue, mantendo amplitudes e frequências estáveis, mesmo com discreta elevação térmica. A fotobiomodulação preservou o biopotencial celular sem sobrecarga e a integração de osciloscopia e termografia constitui uma estratégia robusta para análise em tempo real e investigação dos mecanismos bioelétricos celulares. 

Downloads

Não há dados estatísticos.

Biografia do Autor

Geraldo Medeiros Junior

Profissional biomédico habilitado em Patologia Clínica, Hematologia e Medicina Biofotônica. Formação interdisciplinar voltada para a pesquisa científica e o desenvolvimento tecnológico na área da saúde. Seu enfoque combina a análise clínica com aplicações inovadoras da biofotônica, contribuindo para o avanço do diagnóstico e da terapêutica. Participa ativamente de projetos acadêmicos e publicações científicas que promovem a integração entre ciência, tecnologia e bem-estar humano.

Referências

Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015 Apr;33(4):183–4. DOI: https://doi.org/10.1089/pho.2015.9848

Baxter GD, Liu L, Petrich S, Gisselman AS, Chapple C, Anders JJ, et al. Low level laser therapy (photobiomodulation therapy) for breast cancer-related lymphedema: a systematic review. BMC Cancer. 2017 Dec 7;17:833. DOI: https://doi.org/10.1186/s12885-017-3852-x

Begum Syed S, Ahmet I, Chakir K, Morrell CH, Arany PR, Lakatta EG. Photobiomodulation therapy mitigates cardiovascular aging and improves survival. Lasers Surg Med. 2023 Mar;55(3):278–93. DOI: https://doi.org/10.1002/lsm.23644

Da Silva D, Crous A, Abrahamse H. Photobiomodulation: an effective approach to enhance proliferation and differentiation of adipose-derived stem cells into osteoblasts. Stem Cells Int. 2021 Mar 22;2021:8843179. DOI: https://doi.org/10.1155/2021/8843179

De Oliveira MF, Johnson DS, Demchak T, Tomazoni SS, Leal-Junior EC. Low-intensity laser and LED (photobiomodulation therapy) for pain control of the most common musculoskeletal conditions. Eur J Phys Rehabil Med. 2021 Dec 16;58(2):282–9. DOI: https://doi.org/10.23736/S1973-9087.21.07236-1

Djamgoz MBA, Levin M. Bioelectricity: a quick reminder of a fast-advancing discipline! Bioelectricity. 2020 Sep;2(3):208–9. DOI: https://doi.org/10.1089/bioe.2020.0033

Elson EC, Barnes FS, Chou CK, Greenebaum B, Weaver JC, Chizmadzhev Y, et al. Biological and medical aspects of electromagnetic fields. 3rd ed. Boca Raton: CRC Press; 2018. 476 p.

Feliciano RDS, Atum ALB, Ruiz ÉG da S, Serra AJ, Antônio EL, Manchini MT, et al. Photobiomodulation therapy on myocardial infarction in rats: transcriptional and posttranscriptional implications to cardiac remodeling. Lasers Surg Med. 2021 Nov;53(9):1247–57. DOI: https://doi.org/10.1002/lsm.23407

Glass GE. Photobiomodulation: a review of the molecular evidence for low level light therapy. J Plast Reconstr Aesthet Surg. 2021 May;74(5):1050–60. DOI: https://doi.org/10.1016/j.bjps.2020.12.059

Gobbo M, Rico V, Marta GN, Caini S, Ryan Wolf J, van den Hurk C, et al. Photobiomodulation therapy for the prevention of acute radiation dermatitis: a systematic review and meta-analysis. Support Care Cancer. 2023 Apr;31(4):227. DOI: https://doi.org/10.1007/s00520-023-07673-y

Greenebaum B, Barnes F, editors. Biological and medical aspects of electromagnetic fields. 4th ed. Boca Raton: CRC Press; 2018. 649 p. DOI: https://doi.org/10.1201/9781315186641

Hou TW, Yang CC, Lai TH, Wu YH, Yang CP. Light therapy in chronic migraine. Curr Pain Headache Rep. 2024 Jul;28(7):621–6. DOI: https://doi.org/10.1007/s11916-024-01258-y

Lairedj K, Klausner G, Robijns J, Arany PR, Bensadoun RJ. Photobiomodulation in the prevention and the management of side effects of cancer treatments: bases, results and perspectives. Bull Cancer. 2024 Mar;111(3):314–26. DOI: https://doi.org/10.1016/j.bulcan.2023.08.011

Levin M. Bioelectromagnetics in morphogenesis. Bioelectromagnetics. 2003 Jul;24(5):295–315. DOI: https://doi.org/10.1002/bem.10104

Levin M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021 Apr;184(8):1971–89.

Martirosyan V, Baghdasaryan N, Ayrapetyan S. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12. Electromagn Biol Med. 2013 Sep;32(3):291–300. DOI: https://doi.org/10.3109/15368378.2012.712587

Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation therapy on brain: pioneering an innovative approach to revolutionize cognitive dynamics. Cells. 2024 Jun 3;13(11):966. DOI: https://doi.org/10.3390/cells13110966

Walski T, Grzeszczuk-Kuć K, Gałecka K, Trochanowska-Pauk N, Bohara R, Czerski A, et al. Near-infrared photobiomodulation of blood reversibly inhibits platelet reactivity and reduces hemolysis. Sci Rep. 2022 Mar 8;12:4042. DOI: https://doi.org/10.1038/s41598-022-08053-y

Whited JL, Levin M. Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities. Curr Opin Genet Dev. 2019 Aug;57:61–9.

Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer. 2016 Jun;24(6):2781–92.

Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, et al. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer. 2016 Jun;24(6):2793–805.

Levin M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021 Apr;184(8):1971–89. DOI: https://doi.org/10.1016/j.cell.2021.02.034

Whited JL, Levin M. Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities. Curr Opin Genet Dev. 2019 Aug;57:61–9. DOI: https://doi.org/10.1016/j.gde.2019.06.014

Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer. 2016 Jun;24(6):2781–92. DOI: https://doi.org/10.1007/s00520-016-3152-z

Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, et al. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer. 2016 Jun;24(6):2793–805. DOI: https://doi.org/10.1007/s00520-016-3153-y

Alekseev SI, Ziskin MC. Biological effects of millimeter and submillimeter waves. In: Greenebaum B, Barnes F, editors. Biological and medical aspects of electromagnetic fields. 4th ed. Boca Raton: CRC Press; 2018. p. 649. DOI: https://doi.org/10.1201/9781315186641-7

Downloads

Publicado

21/10/2025

Como Citar

Medeiros Junior, G. (2025). FOTOBIOMODULAÇÃO EM TEMPO REAL DO SANGUE ABORDAGEM INTEGRADA A TERMOGRAFIA E OSCILOSCOPIA . RECISATEC - REVISTA CIENTÍFICA SAÚDE E TECNOLOGIA - ISSN 2763-8405, 5(4), e54398. https://doi.org/10.70187/recisatec.v5i4.398