REAL-TIME PHOTOBIOMODULATION OF BLOOD AN INTEGRATED APPROACH WITH THERMOGRAPHY AND OSCILLOSCOPY
DOI:
https://doi.org/10.70187/recisatec.v5i4.398Keywords:
Photobiomodulation, Biophotonics, Bioelectronics, Photoceutics.Abstract
Photobiomodulation (PBM) has been extensively studied for its effects on biological tissues, particularly regarding mitochondrial modulation. This study presents an experimental approach to assess, in real time, the bioelectric responses of in vitro animal blood samples exposed to 808 nm radiation. Digital oscilloscopy and infrared thermography techniques were employed, allowing integrated analysis of electrical parameters across experimental groups: saline solution, irradiated saline, blood, and irradiated blood. Conclusion: Irradiation with an 808 nm infrared LED modulated the bioelectrical activity of blood, maintaining stable amplitudes and frequencies even with a slight thermal increase. Photobiomodulation preserved the cellular biopotential without overload, and the integration of oscilloscopy and thermography constitutes a robust strategy for real-time analysis and investigation of cellular bioelectrical mechanisms.
Downloads
References
Anders JJ, Lanzafame RJ, Arany PR. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015 Apr;33(4):183–4. DOI: https://doi.org/10.1089/pho.2015.9848
Baxter GD, Liu L, Petrich S, Gisselman AS, Chapple C, Anders JJ, et al. Low level laser therapy (photobiomodulation therapy) for breast cancer-related lymphedema: a systematic review. BMC Cancer. 2017 Dec 7;17:833. DOI: https://doi.org/10.1186/s12885-017-3852-x
Begum Syed S, Ahmet I, Chakir K, Morrell CH, Arany PR, Lakatta EG. Photobiomodulation therapy mitigates cardiovascular aging and improves survival. Lasers Surg Med. 2023 Mar;55(3):278–93. DOI: https://doi.org/10.1002/lsm.23644
Da Silva D, Crous A, Abrahamse H. Photobiomodulation: an effective approach to enhance proliferation and differentiation of adipose-derived stem cells into osteoblasts. Stem Cells Int. 2021 Mar 22;2021:8843179. DOI: https://doi.org/10.1155/2021/8843179
De Oliveira MF, Johnson DS, Demchak T, Tomazoni SS, Leal-Junior EC. Low-intensity laser and LED (photobiomodulation therapy) for pain control of the most common musculoskeletal conditions. Eur J Phys Rehabil Med. 2021 Dec 16;58(2):282–9. DOI: https://doi.org/10.23736/S1973-9087.21.07236-1
Djamgoz MBA, Levin M. Bioelectricity: a quick reminder of a fast-advancing discipline! Bioelectricity. 2020 Sep;2(3):208–9. DOI: https://doi.org/10.1089/bioe.2020.0033
Elson EC, Barnes FS, Chou CK, Greenebaum B, Weaver JC, Chizmadzhev Y, et al. Biological and medical aspects of electromagnetic fields. 3rd ed. Boca Raton: CRC Press; 2018. 476 p.
Feliciano RDS, Atum ALB, Ruiz ÉG da S, Serra AJ, Antônio EL, Manchini MT, et al. Photobiomodulation therapy on myocardial infarction in rats: transcriptional and posttranscriptional implications to cardiac remodeling. Lasers Surg Med. 2021 Nov;53(9):1247–57. DOI: https://doi.org/10.1002/lsm.23407
Glass GE. Photobiomodulation: a review of the molecular evidence for low level light therapy. J Plast Reconstr Aesthet Surg. 2021 May;74(5):1050–60. DOI: https://doi.org/10.1016/j.bjps.2020.12.059
Gobbo M, Rico V, Marta GN, Caini S, Ryan Wolf J, van den Hurk C, et al. Photobiomodulation therapy for the prevention of acute radiation dermatitis: a systematic review and meta-analysis. Support Care Cancer. 2023 Apr;31(4):227. DOI: https://doi.org/10.1007/s00520-023-07673-y
Greenebaum B, Barnes F, editors. Biological and medical aspects of electromagnetic fields. 4th ed. Boca Raton: CRC Press; 2018. 649 p. DOI: https://doi.org/10.1201/9781315186641
Hou TW, Yang CC, Lai TH, Wu YH, Yang CP. Light therapy in chronic migraine. Curr Pain Headache Rep. 2024 Jul;28(7):621–6. DOI: https://doi.org/10.1007/s11916-024-01258-y
Lairedj K, Klausner G, Robijns J, Arany PR, Bensadoun RJ. Photobiomodulation in the prevention and the management of side effects of cancer treatments: bases, results and perspectives. Bull Cancer. 2024 Mar;111(3):314–26. DOI: https://doi.org/10.1016/j.bulcan.2023.08.011
Levin M. Bioelectromagnetics in morphogenesis. Bioelectromagnetics. 2003 Jul;24(5):295–315. DOI: https://doi.org/10.1002/bem.10104
Levin M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021 Apr;184(8):1971–89.
Martirosyan V, Baghdasaryan N, Ayrapetyan S. Bidirectional frequency-dependent effect of extremely low-frequency electromagnetic field on E. coli K-12. Electromagn Biol Med. 2013 Sep;32(3):291–300. DOI: https://doi.org/10.3109/15368378.2012.712587
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation therapy on brain: pioneering an innovative approach to revolutionize cognitive dynamics. Cells. 2024 Jun 3;13(11):966. DOI: https://doi.org/10.3390/cells13110966
Walski T, Grzeszczuk-Kuć K, Gałecka K, Trochanowska-Pauk N, Bohara R, Czerski A, et al. Near-infrared photobiomodulation of blood reversibly inhibits platelet reactivity and reduces hemolysis. Sci Rep. 2022 Mar 8;12:4042. DOI: https://doi.org/10.1038/s41598-022-08053-y
Whited JL, Levin M. Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities. Curr Opin Genet Dev. 2019 Aug;57:61–9.
Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer. 2016 Jun;24(6):2781–92.
Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, et al. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer. 2016 Jun;24(6):2793–805.
Levin M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell. 2021 Apr;184(8):1971–89. DOI: https://doi.org/10.1016/j.cell.2021.02.034
Whited JL, Levin M. Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities. Curr Opin Genet Dev. 2019 Aug;57:61–9. DOI: https://doi.org/10.1016/j.gde.2019.06.014
Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Sonis ST, Elad S, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer. 2016 Jun;24(6):2781–92. DOI: https://doi.org/10.1007/s00520-016-3152-z
Zecha JAEM, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, et al. Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer. 2016 Jun;24(6):2793–805. DOI: https://doi.org/10.1007/s00520-016-3153-y
Alekseev SI, Ziskin MC. Biological effects of millimeter and submillimeter waves. In: Greenebaum B, Barnes F, editors. Biological and medical aspects of electromagnetic fields. 4th ed. Boca Raton: CRC Press; 2018. p. 649. DOI: https://doi.org/10.1201/9781315186641-7
Downloads
Published
How to Cite
License
Copyright (c) 2025 RECISATEC SCIENTIFIC JOURNAL - ISSN 2763-8405

This work is licensed under a Creative Commons Attribution 4.0 International License.
Os direitos autorais dos artigos/resenhas/TCCs publicados pertecem à revista RECISATEC, e seguem o padrão Creative Commons (CC BY 4.0), permitindo a cópia ou reprodução, desde que cite a fonte e respeite os direitos dos autores e contenham menção aos mesmos nos créditos. Toda e qualquer obra publicada na revista, seu conteúdo é de responsabilidade dos autores, cabendo a RECISATEC apenas ser o veículo de divulgação, seguindo os padrões nacionais e internacionais de publicação.





































